B_s mixing: gate to new physics?

Ulrich Nierste

Karlsruhe Institute of Technology

TH Seminar, Fermilab August 2010

Contents

B physics basics

 $B_s\!-\!\overline{B}_s$ mixing and new physics

Global analysis of $B_s \! - \! \overline{B}_s$ mixing and $B_d \! - \! \overline{B}_d$ mixing

SUSY

GUTs

Conclusions

B physics

Strategies to explore the TeV scale:

High energy: direct production of new particles Tevatron, LHC High precision: quantum effects from new particles high statistics

B physics

Strategies to explore the TeV scale:

High energy: direct production of new particles Tevatron, LHC High precision: quantum effects from new particles high statistics Tevatron, LHC,

B physics

Strategies to explore the TeV scale:

High energy: direct production of new par-

ticles
Tevatron, LHC

High precision:

quantum effects from new particles high statistics
Tevatron, LHC, Babar, Belle,

. . .

B physics

Strategies to explore the TeV scale:

High energy: direct production of new particles Tevatron, LHC

High precision: quantum effects from new particles high statistics

Tevatron, LHC, Babar, Belle,

٠.

With precision measurements one studies the couplings and mixing patterns of the new particles which the LHC will discover.

Yukawa sector

Yukawa coupling of the Higgs field:

$$y_{ij}\overline{f}_if_j(v+H)$$

 \Rightarrow quark mass matrix: $m_{ij} = y_{ij}v$ diagonalisation \Rightarrow fermion masses and CKM matrix V_{CKM} .

Yukawa sector

Yukawa coupling of the Higgs field:

$$y_{ij}\overline{f}_if_j(v+H)$$

 \Rightarrow quark mass matrix: $m_{ij} = y_{ij}v$ diagonalisation \Rightarrow fermion masses and CKM matrix V_{CKM} .

$$V_{CKM} \neq 1 \Rightarrow$$
 couplings of the W-Bosons to quarks of different generations, flavor physics

Yukawa sector

Yukawa coupling of the Higgs field:

$$y_{ij}\overline{f}_if_j(v+H)$$

 \Rightarrow quark mass matrix: $m_{ij} = y_{ij}v$ diagonalisation \Rightarrow fermion masses and CKM matrix V_{CKM} .

 $V_{CKM} \neq$ 1 \Rightarrow couplings of the W-Bosons to quarks of different generations,

flavor physics

 y_{ij} , V_{CKM} complex \Rightarrow CP violation

Yukawa sector

Yukawa coupling of the Higgs field:

$$y_{ij}\overline{f}_if_j(v+H)$$

 \Rightarrow quark mass matrix: $m_{ij} = y_{ij}v$ diagonalisation \Rightarrow fermion masses and CKM matrix V_{CKM} .

flavor physics

 y_{ij} , V_{CKM} complex \Rightarrow CP violation

10 parameters in the quark sektor,10 or 12 parameters in the lepton sector.

Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2246$:

$$egin{pmatrix} egin{pmatrix} m{V}_{ud} & m{V}_{us} & m{V}_{ub} \ m{V}_{cd} & m{V}_{cs} & m{V}_{cb} \ m{V}_{td} & m{V}_{ts} & m{V}_{tb} \end{pmatrix} \simeq egin{pmatrix} 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + rac{\lambda^2}{2}\right) (\overline{
ho} - i\overline{\eta}) \ -\lambda - iA^2\lambda^5\overline{\eta} & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3 (1 - \overline{
ho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4\overline{\eta} & 1 \end{pmatrix}$$

with the Wolfenstein parameters λ , A, $\overline{\rho}$, $\overline{\eta}$ CP violation $\Leftrightarrow \overline{\eta} \neq 0$

Expand the CKM matrix V in $V_{us} \simeq \lambda = 0.2246$:

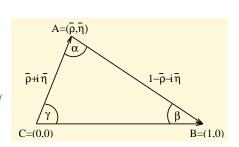
$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(1 + \frac{\lambda^2}{2}\right) (\overline{\rho} - i\overline{\eta}) \\ -\lambda - iA^2\lambda^5\overline{\eta} & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4\overline{\eta} & 1 \end{pmatrix}$$

with the Wolfenstein parameters λ , A, $\overline{\rho}$, $\overline{\eta}$ CP violation $\Leftrightarrow \overline{\eta} \neq 0$

Unitarity triangle:

Exact definition:

$$\overline{\rho} + i\overline{\eta} = -\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \\
= \left| \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}$$



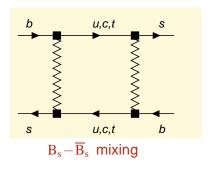
If new physics is associated with the scale Λ , effects on weak processes (such as weak B decays) are generically suppressed by a factor of order M_W^2/Λ^2 compared to the Standard Model.

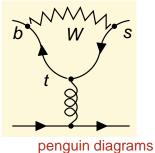
⇒ study processes which are suppressed in the Standard Model.

Especially sensitive to new physics are processes, in which (only) the Standard Model contribution is suppressed.

⇒ flavour-changing neutral current (FCNCs) processes

Examples for FCNC processes:





$B_s - \overline{B}_s$ mixing basics

Schrödinger equation:

$$i \frac{d}{dt} \left(\begin{array}{c} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{array} \right) = \left(M - i \frac{\Gamma}{2} \right) \left(\begin{array}{c} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{array} \right)$$

where $B_s \sim \overline{b}s$ and $\overline{B}_s \sim b\overline{s}$.

$B_s - \overline{B}_s$ mixing basics

Schrödinger equation:

$$i \frac{d}{dt} \left(\begin{array}{c} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{array} \right) = \left(M - i \frac{\Gamma}{2} \right) \left(\begin{array}{c} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{array} \right)$$

where $B_s \sim \overline{b}s$ and $\overline{B}_s \sim b\overline{s}$.

3 physical quantities in $B_s - \overline{B}_s$ mixing:

$$\left| M_{12}^{s} \right|, \quad \left| \Gamma_{12}^{s} \right|, \quad \phi_{s} \equiv \arg \left(-\frac{M_{12}^{s}}{\Gamma_{12}^{s}} \right)$$

Two mass eigenstates:

Lighter eigenstate:
$$|B_L\rangle = p|B_s\rangle + q|\overline{B}_s\rangle$$
.
Heavier eigenstate: $|B_H\rangle = p|B_s\rangle - q|\overline{B}_s\rangle$

with masses
$$M_{L,H}$$
 and widths $\Gamma_{L,H}$.
Further $|p|^2 + |q|^2 = 1$.

Two mass eigenstates:

Lighter eigenstate:
$$|B_L\rangle = p|B_s\rangle + q|\overline{B}_s\rangle$$
.
Heavier eigenstate: $|B_H\rangle = p|B_s\rangle - q|\overline{B}_s\rangle$

with masses $M_{L,H}$ and widths $\Gamma_{L,H}$. Further $|p|^2 + |q|^2 = 1$.

Relation of Δm_s and $\Delta \Gamma_s$ to $|M_{12}^s|$, $|\Gamma_{12}^s|$ and ϕ_s :

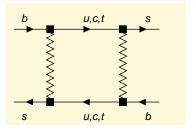
$$\Delta m_{s} = M_{H} - M_{L} \simeq 2|M_{12}^{s}|,$$

$$\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \simeq 2|\Gamma_{12}^{s}|\cos\phi_{s}$$

 M_{12}^{s} stems from the dispersive (real) part of the box diagram, internal (\bar{t}, t) .

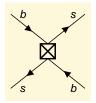
 Γ_{12}^{s} stems from the absorpive (imaginary) part of the box diagram, internal (\overline{c}, c) .

(*u*'s are negligible).



Theoretical uncertainty of M_{12}^{s} dominated by matrix element:

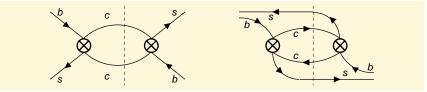
$$\langle B_{\rm S} | \overline{\rm s}_L \gamma_\nu b_L \, \overline{\rm s}_L \gamma^\nu b_L | \overline{B}_{\rm S} \rangle = \frac{2}{3} m_{\rm B_s}^2 \, f_{\rm B_s}^2 \, B$$



Optical theorem:

$$\Gamma_{12}^{s} = -\frac{1}{2M_{B_s}} \operatorname{Abs} \langle B_s | i \int d^4x \, T \mathcal{H}^{\Delta B=1}(x) \mathcal{H}^{\Delta B=1}(0) | \bar{B}_s \rangle$$

from final states common to B_s and \overline{B}_s .



Crosses: effective $|\Delta B| = 1$ operators from W-mediated b-decay

 Γ_{12}^{s} is a CKM-favored tree-level effect associated with final states containing a (\overline{c}, c) pair.

Basics

$$a_{\mathrm{fs}}^{\mathrm{S}} = \frac{\Gamma(\overline{B}_{\mathrm{S}}(t) \to f) - \Gamma(B_{\mathrm{S}}(t) \to \overline{f})}{\Gamma(\overline{B}_{\mathrm{S}}(t) \to f) + \Gamma(B_{\mathrm{S}}(t) \to \overline{f})}$$

with e.g. $f = X\ell^+\nu_{\ell}$. Untagged rate:

$$A_{\mathrm{fs,unt}}^{\mathrm{s}} \ \equiv \ \frac{\int_{0}^{\infty} dt \left[\Gamma(\overline{B}_{\mathrm{s}}^{\,)} \to \mu^{+} X) - \Gamma(\overline{B}_{\mathrm{s}}^{\,)} \to \mu^{-} X) \right]}{\int_{0}^{\infty} dt \left[\Gamma(\overline{B}_{\mathrm{s}}^{\,)} \to \mu^{+} X) + \Gamma(\overline{B}_{\mathrm{s}}^{\,)} \to \mu^{-} X) \right]} \ \simeq \ \frac{a_{\mathrm{fs}}^{\mathrm{s}}}{2}$$

Dilepton events:

Compare the number N_{++} of decays $(B_s(t), \overline{B}_s(t)) \to (f, f)$ with the number N_{--} of decays to $(\overline{f}, \overline{f})$.

Then
$$a_{fs}^s = \frac{N_{++} - N_{--}}{N_{++} + N_{--}}$$
.

May 15, 2010: DØ presents

$$A_{\rm sl}^b = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$$

for a mixture of B_d and B_s mesons with

$$A_{\rm sl}^b = (0.506 \pm 0.043) a_{\rm sl}^d + (0.494 \pm 0.043) a_{\rm sl}^s$$

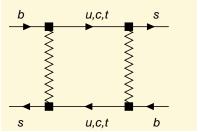
The result is 3.2
$$\sigma$$
 away from $A_{\rm sl}^{b,\rm SM}=\left(-0.23^{+0.05}_{-0.06}\right)\cdot 10^{-3}$. A. Lenz, UN, 2006

$B_s - \overline{B}_s$ mixing and new physics

Standard Model:

M₁₂ from dispersive part of box, only internal t relevant;

 Γ_{12}^{s} from absorptive part of box, only internal u, c contribute.



New physics can barely affect Γ_{12}^s , which stems from tree-level decays.

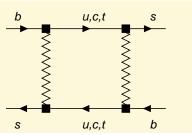
 M_{12}^{s} is very sensitive to virtual effects of new heavy particles.

$B_s - \overline{B}_s$ mixing and new physics

Standard Model:

 M_{12}^{s} from dispersive part of box, only internal t relevant;

 Γ_{12}^{s} from absorptive part of box, only internal u, c contribute.



New physics can barely affect Γ_{12}^s , which stems from tree-level decays.

 M_{12}^{s} is very sensitive to virtual effects of new heavy particles.

 $\Rightarrow \Delta m_s \simeq 2|M_{12}^s|$ can change.

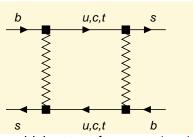
and in $\phi_s \simeq \arg(-M_{12}^s/\Gamma_{12}^s)$ the GIM suppression of ϕ_s can be lifted.

$B_s - \overline{B}_s$ mixing and new physics

Standard Model:

 M_{12}^{s} from dispersive part of box, only internal t relevant;

 Γ_{12}^{s} from absorptive part of box, only internal u, c contribute.



New physics can barely affect Γ_{12}^s , which stems from tree-level decays.

 M_{12}^{s} is very sensitive to virtual effects of new heavy particles.

 $\Rightarrow \Delta m_s \simeq 2|M_{12}^s|$ can change.

and in $\phi_s \simeq \arg(-M_{12}^s/\Gamma_{12}^s)$ the GIM suppression of ϕ_s can be lifted.

 $\Rightarrow |\Delta\Gamma_s| = \Delta\Gamma_{s,SM} |\cos\phi_s|$ is depleted and $|a_{fs}^s|$ is enhanced, by up to a factor of 200.

To identify or constrain new physics one wants to measure both the magnitude and phase of M_{12}^{S} .

$$\rightarrow$$
 $\Delta m_s = 2|M_{12}^s|$

Three untagged measurements are sensitive to arg $M_{12}^{\rm S}$:

- 1. $|\Delta\Gamma_s| = 2|\Gamma_{12}^s| |\cos\phi_s|$
- 2. $a_{\rm fs}^{\rm S} = \left| \frac{\Gamma_{12}^{\rm S}}{M_{\rm so}^{\rm S}} \right| \sin \phi_{\rm S}$
- 3. the angular distribution of $(\overline{B}_s) \to VV'$, where V, V' are vector bosons.

To identify or constrain new physics one wants to measure both the magnitude and phase of M_{12}^{S} .

$$\rightarrow$$
 $\Delta m_s = 2|M_{12}^s|$

Three untagged measurements are sensitive to arg M_{12}^{s} :

- 1. $|\Delta\Gamma_s| = 2|\Gamma_{12}^s| |\cos\phi_s|$
- 2. $a_{\rm fs}^{\rm S} = \left| \frac{\Gamma_{12}^{\rm S}}{M_{\rm so}^{\rm S}} \right| \sin \phi_{\rm S}$
- 3. the angular distribution of $(\overline{B}_s) \to VV'$, where V, V' are vector bosons.

Gold-plated tagged measurement of arg $M_{12}^{\rm S}$: Mixing-induced CP asymmetry in $a_{mix}^{CP}(B_s \rightarrow J/\psi \phi)$ (with angular analysis)

Generic new physics

The phase $\phi_s = \arg(-M_{12}/\Gamma_{12})$ is negligibly small in the Standard Model:

$$\phi_{\rm s}^{\rm SM} = 0.2^{\circ}$$
.

Define the complex parameter Δ_s through

$$M_{12}^{s} \equiv M_{12}^{\text{SM,s}} \cdot \Delta_{s}, \qquad \Delta_{s} \equiv |\Delta_{s}| e^{i\phi_{s}^{\Delta}}.$$

In the Standard Model $\Delta_s = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$.

Generic new physics

The phase $\phi_s = \arg(-M_{12}/\Gamma_{12})$ is negligibly small in the Standard Model:

$$\phi_{\rm S}^{\rm SM}=$$
 0.2°.

Define the complex parameter Δ_s through

$$M_{12}^{s} \equiv M_{12}^{\text{SM,s}} \cdot \Delta_{s}, \qquad \Delta_{s} \equiv |\Delta_{s}| e^{i\phi_{s}^{\Delta}}.$$

In the Standard Model $\Delta_s = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$. Frequently used alternative notation:

$$\Delta_s = r_s^2 \cdot e^{i 2\theta_s}$$

Generic new physics

The phase $\phi_s = \arg(-M_{12}/\Gamma_{12})$ is negligibly small in the Standard Model:

$$\phi_s^{\mathrm{SM}} = 0.2^{\circ}$$
.

Define the complex parameter Δ_s through

$$M_{12}^{s} \equiv M_{12}^{\text{SM,s}} \cdot \Delta_{s}, \qquad \Delta_{s} \equiv |\Delta_{s}| e^{i\phi_{s}^{\Delta}}.$$

In the Standard Model $\Delta_s = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$. Frequently used alternative notation:

$$\Delta_s = r_s^2 \cdot e^{i 2\theta_s}$$

The CDF measurement

$$\Delta m_s = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1}$$

and $f_{B_s}\sqrt{B} = (210 \pm 16)$ MeV lattice world av.

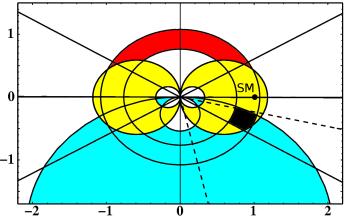
imply
$$|\Delta_s| = 0.92 \pm 0.14_{(th)} \pm 0.01_{(exp)}$$

Status of December 2006: CDF or DØ data available for

- mass difference △m_s,
- the semileptonic CP asymmetry a^s_{fs}
- the angular distribution in $(\overline{B}_s) \to J/\psi \phi$ and
- ΔΓ_S

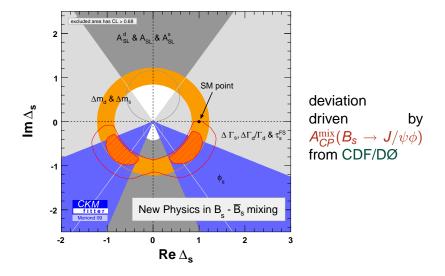
to constrain Δ_s .

The complex Δ_s plane in 2006:



We black area shown corresponds to a deviation from the Standard Model by 2σ . The area delimited by the dashed lines has mirror solutions in the other three quadrants. Alex Lenz, UN

The complex Δ_s plane before May 14, 2010:



$$\overline{\mathbf{s}}_{L}\gamma_{\nu}\mathbf{b}_{L}\,\overline{\mathbf{s}}_{L}\gamma^{\nu}\mathbf{b}_{L}$$
 and $\overline{\mathbf{s}}_{L}^{\alpha}\mathbf{b}_{R}^{\beta}\,\overline{\mathbf{s}}_{L}^{\beta}\mathbf{b}_{R}^{\alpha}$

with matrix elements:

$$\langle B_{\rm S} | \overline{s}_{L} \gamma_{\nu} b_{L} \overline{s}_{L} \gamma^{\nu} b_{L} | \overline{B}_{\rm S} \rangle = \frac{2}{3} m_{B_{\rm S}}^{2} f_{B_{\rm S}}^{2} B$$

$$\langle B_{\rm S} | \overline{s}_{L}^{\alpha} b_{R}^{\beta} \overline{s}_{L}^{\beta} b_{R}^{\alpha} | \overline{B}_{\rm S} \rangle = \frac{1}{12} \frac{m_{B_{\rm S}}^{4}}{[m_{b} + m_{\rm S}]^{2}} f_{B_{\rm S}}^{2} \widetilde{B}_{\rm S}$$

$$\left| \frac{\Gamma_{12}}{M_{12}^{\text{SM}}} \right| = \left[32 \pm 8 + (17 \pm 2) \frac{\widetilde{B}_{\text{S}}}{B} \right] \cdot 10^{-3}$$
$$= (4.97 \pm 0.94) \cdot 10^{-3}$$

$$a_{\rm fs}^{\rm S} = \frac{|\Gamma_{12}^{\rm S}|}{|M_{12}^{\rm S}|} \sin \phi_{\rm S} = \frac{|\Gamma_{12}^{\rm S}|}{|M_{12}^{\rm SM,s}|} \cdot \frac{\sin \phi_{\rm S}}{|\Delta_{\rm S}|} = (4.97 \pm 0.94) \cdot 10^{-3} \cdot \frac{\sin \phi_{\rm S}}{|\Delta_{\rm S}|}$$

If there is no new physics in $a_{\rm fs}^{\it d}$, the DØ measurement of $A_{\rm sl}^{\it b} = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$ roughly implies $a_{\rm fs}^{\it s} = (-19 \pm 6) \cdot 10^{-3}$.

$$a_{\rm fs}^{\rm S} = \frac{|\Gamma_{12}^{\rm S}|}{|M_{12}^{\rm S}|} \sin\phi_{\rm S} = \frac{|\Gamma_{12}^{\rm S}|}{|M_{12}^{\rm SM,s}|} \cdot \frac{\sin\phi_{\rm S}}{|\Delta_{\rm S}|} = (4.97 \pm 0.94) \cdot 10^{-3} \cdot \frac{\sin\phi_{\rm S}}{|\Delta_{\rm S}|}$$

If there is no new physics in a_{fs}^d , the DØ measurement of $A_{\rm sl}^b = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$ roughly implies $a_{f_0}^{s} = (-19 \pm 6) \cdot 10^{-3}$

To maximise $|a_{fs}^{S}|$ choose the minimal value $|\Delta_{S}|_{min} = 0.78$ to find

$$a_{\rm fs}^{\rm s} \geq 7.6 \cdot 10^{-3} \sin \phi_{\rm s}.$$

The DØ result therefore means

$$\sin \phi_s \le -2.5 \pm 0.8$$
.

Measurement by B factories: $a_{fc}^d = (-4.7 \pm 4.6) \cdot 10^{-3}$

However: $a_{f_0}^d$ can be better determined indirectly through

$$a_{\rm fs}^d = rac{|\Gamma_{12}^d|}{|M_{12}^d|} \sin(\phi_d^{
m SM} + \phi_d^{\Delta})$$
 with $\phi_d^{
m SM} = (-5 \pm 2)^{\circ}$

using the measurements of $\Delta m_d = 2|M_{12}^d|$ and of $2\beta + \phi_d^{\Delta} = (21 \pm 1)^{\circ} \text{ from } A_{CD}^{\text{mix}}(B_d \rightarrow J/\psi K_S)$.

It helps to put some new physics in a_{fs}^d :

Measurement by B factories: $a_{fc}^d = (-4.7 \pm 4.6) \cdot 10^{-3}$

However: $a_{f_0}^d$ can be better determined indirectly through

$$a_{\rm fs}^d = rac{|\Gamma_{12}^d|}{|M_{12}^d|} \sin(\phi_d^{
m SM} + \phi_d^{\Delta})$$
 with $\phi_d^{
m SM} = (-5 \pm 2)^{\circ}$

using the measurements of $\Delta m_d = 2|M_{12}^d|$ and of $2\beta + \phi_d^{\Delta} = (21 \pm 1)^{\circ} \text{ from } A_{CP}^{\text{mix}}(B_d \rightarrow J/\psi K_S)$. \Rightarrow requires fit to unitarity triangle to find β

Other connection between B_d and B_s mixing:

$$\frac{\Delta m_{\rm s}}{\Delta m_{\rm d}} = \frac{m_{B_{\rm s}}}{m_{B_{\rm d}}} \left| \frac{V_{\rm ts}}{V_{\rm td}} \right|^2 \xi^2 \frac{|\Delta_{\rm s}|}{|\Delta_{\rm d}|}$$

with

$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}} = 1.23 \pm 0.03$$

Global analysis of $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing

Based on work with A. Lenz and the CKMfitter Group (J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess)

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

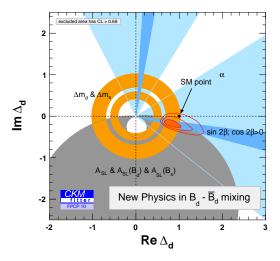
We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_s and Δ_d in three scenarios.

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$

Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Results in scenario I:



Reason for the tension with the SM: $B(B^+ \to \tau^+ \nu_{\tau})$ SM prediction (CL= 2σ):

$$B(B^+ \to \tau^+ \nu_{\tau}) = \left(0.763^{+0.214}_{-0.097}\right) \cdot 10^{-4}$$

Average of several measurements by BaBar and Belle:

$$B^{\text{exp}}(B^+ \to \tau^+ \nu_{\tau}) = (1.68 \pm 0.31) \cdot 10^{-4}$$

Reason for the tension with the SM: $B(B^+ \to \tau^+ \nu_{\tau})$ SM prediction (CL= 2σ):

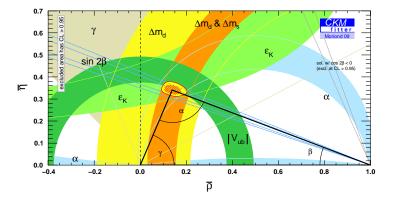
$$B(B^+ \to \tau^+ \nu_{\tau}) = \left(0.763^{+0.214}_{-0.097}\right) \cdot 10^{-4}$$

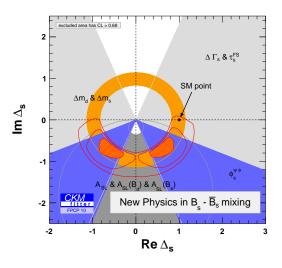
Average of several measurements by BaBar and Belle:

$$B^{ ext{exp}}(B^+ o au^+
u_ au) = (1.68 \pm 0.31) \cdot 10^{-4}$$
 $B(B^+ o au^+
u_ au) = rac{G_F^2 m_{B^+} m_ au^2}{8\pi} \left(1 - rac{m_ au^2}{m_{B^+}^2}\right)^2 |V_{ub}|^2 f_B^2 au_{B^+}.$

But with e.g. $f_B = 210 \,\text{MeV}$ and $|V_{ub}| = 4.4 \cdot 10^{-3} \,\text{find}$ $B(B^+ \to \tau^+ \nu_{\tau}) = 1.51 \cdot 10^{-4}$. These parameters comply with the global fit to the UT only, if new physics changes the constraints from $A_{CP}^{\text{mix}}(B_d \to J/\psi K_S)$, Δm_d and $\Delta m_d/\Delta m_s$.

Global fit in the SM:





without 2010 CDF/DØ data on $B_s \rightarrow J/\psi \phi$

Other authors have seen a tension with the SM in the same direction stemming from ϵ_K .

Lunghi, Soni; Buras, Guadagnoli

In our fit the tension with ϵ_K is mild, because we use a more conservative error on the hadronic parameter $\hat{B}_K = 0.724 \pm 0.004 \pm 0.067$ and because the Rfit method is more conservative.

p-values:

Calculate χ^2/N_{dof} with and without a hypothesis to find:

Hypothesis	p-value
$\operatorname{Im}(\Delta_d) = 0 \text{ (1D)}$	2.5 σ
$\text{Im}(\Delta_s)=0 \text{ (1D)}$	3.1 σ
$\Delta_d = 1$ (2D)	2.5 σ
$\Delta_{s}=$ 1 (2D)	2.7 σ
$\operatorname{Im}(\Delta_d) = \operatorname{Im}(\Delta_s) = 0 \text{ (2D)}$	3.8 σ
$\Delta_d = \Delta_s$ (2D)	2.1 σ
$\Delta_d = \Delta_s = 1$ (4D)	3.4 σ

Removing a_{fs}^d as an input the global fit predicts (at 2σ):

$$a_{\rm fs}^d = \left(-3.4^{+2.3}_{-1.2}\right) \cdot 10^{-3}.$$

$$a_{\rm fs}^d = \left(-3.4^{+2.3}_{-1.2}\right) \cdot 10^{-3}.$$

Same game with $a_{\rm fs} = (0.506 \pm 0.043) a_{\rm sl}^d + (0.494 \pm 0.043) a_{\rm sl}^s$:

$$a_{\rm fs} = \left(-4.2^{+2.7}_{-2.6}\right) \cdot 10^{-3}.$$

$$a_{\rm fs}^d = \left(-3.4^{+2.3}_{-1.2}\right) \cdot 10^{-3}.$$

Same game with $a_{\rm fs} = (0.506 \pm 0.043) a_{\rm sl}^d + (0.494 \pm 0.043) a_{\rm sl}^{\rm S}$:

$$a_{\rm fs} = \left(-4.2^{+2.7}_{-2.6}\right) \cdot 10^{-3}.$$

This is just 1.5σ away from the DØ/CDF average

$$a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3}$$
.

Scenario III (complex $\Delta_s = \Delta_d$) fits the data quite well irrespective of whether $B(B^+ \to \tau^+ \nu_\tau)$ is included or not.

Hypothesis	p-value
$Im(\Delta) = 0 (1D)$	3.4 σ
$\Delta=1$ (2D)	3 .1 σ

Supersymmetry

The MSSM has many new sources of flavour violation, all in the supersymmetry-breaking sector.

No problem to get big effects in $B_s - \overline{B}_s$ mixing, but rather to suppress the big effects elsewhere.

Squark mass matrix

Diagonalise the Yukawa matrices Y_{jk}^u and Y_{jk}^d \Rightarrow quark mass matrices are diagonal, super-CKM basis

Squark mass matrix

Diagonalise the Yukawa matrices Y^u_{jk} and Y^d_{jk} \Rightarrow quark mass matrices are diagonal, super-CKM basis E.g. Down-squark mass matrix:

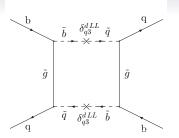
$$M_{\tilde{d}}^{2} = \begin{pmatrix} \left(M_{1L}^{\tilde{d}}\right)^{2} & \Delta_{12}^{\tilde{d}LL} & \Delta_{13}^{\tilde{d}LL} & \Delta_{11}^{\tilde{d}LL} & \Delta_{12}^{\tilde{d}LR} & \Delta_{13}^{\tilde{d}LR} \\ \Delta_{12}^{\tilde{d}LL^{*}} & \left(M_{2L}^{\tilde{d}}\right)^{2} & \Delta_{23}^{\tilde{d}LL} & \Delta_{12}^{\tilde{d}RL^{*}} & \Delta_{22}^{\tilde{d}LR} & \Delta_{23}^{\tilde{d}LR} \\ \Delta_{13}^{\tilde{d}LL^{*}} & \Delta_{23}^{\tilde{d}LL^{*}} & \left(M_{3L}^{\tilde{d}}\right)^{2} & \Delta_{13}^{\tilde{d}RL^{*}} & \Delta_{23}^{\tilde{d}RL^{*}} & \Delta_{33}^{\tilde{d}LR} \\ \Delta_{11}^{\tilde{d}LR^{*}} & \Delta_{12}^{\tilde{d}RL} & \Delta_{13}^{\tilde{d}RL} & \left(M_{1R}^{\tilde{d}}\right)^{2} & \Delta_{12}^{\tilde{d}RR} & \Delta_{13}^{\tilde{d}RR} \\ \Delta_{12}^{\tilde{d}LR^{*}} & \Delta_{22}^{\tilde{d}LR^{*}} & \Delta_{23}^{\tilde{d}LR^{*}} & \Delta_{12}^{\tilde{d}RR^{*}} & \left(M_{2R}^{\tilde{d}}\right)^{2} & \Delta_{23}^{\tilde{d}RR} \\ \Delta_{13}^{\tilde{d}LR^{*}} & \Delta_{23}^{\tilde{d}LR^{*}} & \Delta_{33}^{\tilde{d}LR^{*}} & \Delta_{13}^{\tilde{d}RR^{*}} & \Delta_{23}^{\tilde{d}RR^{*}} & \left(M_{3R}^{\tilde{d}}\right)^{2} \end{pmatrix}$$

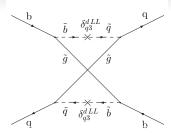
Squark mass matrix

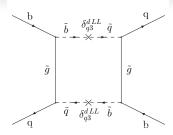
Diagonalise the Yukawa matrices Y^u_{jk} and Y^d_{jk} \Rightarrow quark mass matrices are diagonal, super-CKM basis E.g. Down-squark mass matrix:

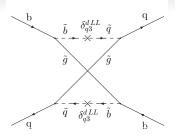
$$M_{\tilde{d}}^{2} = \begin{pmatrix} \left(M_{1L}^{\tilde{d}}\right)^{2} & \Delta_{12}^{\tilde{d}LL} & \Delta_{13}^{\tilde{d}LL} & \Delta_{11}^{\tilde{d}LR} & \Delta_{12}^{\tilde{d}LR} & \Delta_{13}^{\tilde{d}LR} \\ \Delta_{12}^{\tilde{d}LL^{*}} & \left(M_{2L}^{\tilde{d}}\right)^{2} & \Delta_{23}^{\tilde{d}LL} & \Delta_{12}^{\tilde{d}RL^{*}} & \Delta_{22}^{\tilde{d}LR} & \Delta_{23}^{\tilde{d}LR} \\ \Delta_{13}^{\tilde{d}LL^{*}} & \Delta_{23}^{\tilde{d}LL^{*}} & \left(M_{3L}^{\tilde{d}}\right)^{2} & \Delta_{13}^{\tilde{d}RL^{*}} & \Delta_{23}^{\tilde{d}RL^{*}} & \Delta_{33}^{\tilde{d}LR} \\ \Delta_{11}^{\tilde{d}LR^{*}} & \Delta_{12}^{\tilde{d}RL} & \Delta_{13}^{\tilde{d}RL} & \left(M_{1R}^{\tilde{d}}\right)^{2} & \Delta_{12}^{\tilde{d}RR} & \Delta_{13}^{\tilde{d}RR} \\ \Delta_{12}^{\tilde{d}LR^{*}} & \Delta_{22}^{\tilde{d}LR^{*}} & \Delta_{23}^{\tilde{d}LR^{*}} & \Delta_{12}^{\tilde{d}RR^{*}} & \left(M_{2R}^{\tilde{d}}\right)^{2} & \Delta_{23}^{\tilde{d}RR} \\ \Delta_{13}^{\tilde{d}LR^{*}} & \Delta_{23}^{\tilde{d}LR^{*}} & \Delta_{33}^{\tilde{d}LR^{*}} & \Delta_{13}^{\tilde{d}RR^{*}} & \Delta_{23}^{\tilde{d}RR^{*}} & \left(M_{3R}^{\tilde{d}}\right)^{2} \end{pmatrix}$$

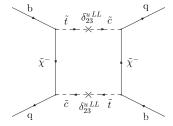
Not diagonal! \Rightarrow new FCNC transitions.











Flavour and SUSY GUTs

Linking quarks to neutrinos: Flavour mixing:

quarks: Cabibbo-Kobayashi-Maskawa (CKM) matrix

leptons: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Consider SU(5) multiplets:

$$\mathbf{\overline{5}_1} = \begin{pmatrix} \mathbf{d}_R^c \\ \mathbf{d}_R^c \\ \mathbf{d}_R^c \\ \mathbf{e}_L \\ -\nu_{\mathbf{e}} \end{pmatrix}, \qquad \mathbf{\overline{5}_2} = \begin{pmatrix} \mathbf{s}_R^c \\ \mathbf{s}_R^c \\ \mathbf{s}_R^c \\ \mathbf{\mu}_L \\ -\nu_{\mu} \end{pmatrix}, \qquad \mathbf{\overline{5}_3} = \begin{pmatrix} \mathbf{b}_R^c \\ \mathbf{b}_R^c \\ \mathbf{b}_R^c \\ \mathbf{b}_R^c \\ \tau_L \\ -\nu_{\tau} \end{pmatrix}.$$

If the observed large atmospheric neutrino mixing angle stems from a rotation of $\overline{\bf 5}_2$ and $\overline{\bf 5}_3$, it will induce a large $\tilde{b}_R - \tilde{\bf s}_R$ -mixing (Moroi).

 \Rightarrow new b_R - s_R transitions from gluino-squark loops possible.

Chang-Masiero-Murayama model

Symmetry breaking chain:

$$SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2)_L \times U(1)_Y$$
.

1. The SUSY-breaking terms are universal at the Planck scale.

Chang-Masiero-Murayama model

Symmetry breaking chain:

$$SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2)_I \times U(1)_Y$$
.

- 1. The SUSY-breaking terms are universal at the Planck scale.
- Renormalization effects from the top-Yukawa coupling destroy the universality at M_{GUT}.

Chang-Masiero-Murayama model

Symmetry breaking chain:

$$SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2)_L \times U(1)_Y$$
.

- The SUSY-breaking terms are universal at the Planck scale.
- 2. Renormalization effects from the top-Yukawa coupling destroy the universality at M_{GUT} .
- 3. Rotating $\overline{\bf 5}_2$ and $\overline{\bf 5}_3$ into mass eigenstates generates a $\tilde{b}_R \tilde{s}_R$ element in the mass matrix of right-handed squarks.

1. new loop-induced $b_R \rightarrow s_R$ and $b_L \rightarrow s_R$ transitions, while all other FCNC transitions are CKM-like,

- 1. new loop-induced $b_R \rightarrow s_R$ and $b_L \rightarrow s_R$ transitions, while all other FCNC transitions are CKM-like,
- all MSSM masses and couplings fixed in terms of a few GUT parameters.

- 1. new loop-induced $b_R \rightarrow s_R$ and $b_L \rightarrow s_R$ transitions, while all other FCNC transitions are CKM-like,
- all MSSM masses and couplings fixed in terms of a few GUT parameters.

- 1. new loop-induced $b_R \rightarrow s_R$ and $b_L \rightarrow s_R$ transitions, while all other FCNC transitions are CKM-like,
- all MSSM masses and couplings fixed in terms of a few GUT parameters.
 - \Rightarrow well-motivated falsifiable version of the MSSM without minimal flavour violation (MFV), puts largest effects into $b_R \rightarrow s_R$, where Standard Model leaves the most room for new physics.

SO(10) superpotential:

$$W_{Y} = \frac{1}{2} 16_{i} Y_{u}^{ij} 16_{j} 10_{H} + \frac{1}{2} 16_{i} Y_{d}^{ij} 16_{j} \frac{45_{H} 10'_{H}}{M_{Pl}} + \frac{1}{2} 16_{i} Y_{N}^{ij} 16_{j} \frac{\overline{16}_{H} \overline{16}_{H}}{M_{Pl}}$$

with the Planck mass M_{Pl} and

16_i: one matter superfield per generation, i = 1, 2, 3,

 10_H : Higgs superfield containing MSSM Higgs superfield H_u ,

 $10'_{H}$: Higgs superfield containing MSSM superfield H_{u} ,

 $\frac{45_H}{16_H}$: Higgs superfield in adjoint representation, Higgs superfield in spinor representation.

"Most minimal flavor violation"

The Yukawa matrices Y_{μ} and Y_{N} are always symmetric. In the CMM model they are assumed to be simultaneously diagonalisable at the scale $Q = M_{Pl}$, where the soft SUSY-breaking terms are universal. All flavour violation stems from Y_d :

$$Y_d = V_{CKM}^* \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} U_{PMNS}$$

For flavour physics relevant: large top-Yukawa coupling in Y_u . In a basis with diagonal Y_u the low-energy mass matrix for the right-handed down squarks reads:

$$\mathsf{m}_{\tilde{d}}^2\left(\mathit{M}_{\mathit{Z}}\right) = \mathsf{diag}\left(\mathit{m}_{\tilde{d}}^2,\,\mathit{m}_{\tilde{d}}^2,\,\mathit{m}_{\tilde{d}}^2 - \Delta_{\tilde{d}}\right).$$

with a calculable real parameter $\Delta_{\tilde{d}}$. Rotating Y_d to diagonal form puts the large atmospheric neutrino mixing angle into $m_{\tilde{d}}^2$:

$$U_{\text{PMNS}}^{\dagger} \, \mathsf{m}_{\tilde{d}}^{2} \, U_{\text{PMNS}} = \begin{pmatrix} m_{\tilde{d}}^{2} & 0 & 0 \\ 0 & m_{\tilde{d}}^{2} - \frac{1}{2} \, \Delta_{\tilde{d}} & -\frac{1}{2} \, \Delta_{\tilde{d}} \, e^{i\xi} \\ 0 & -\frac{1}{2} \, \Delta_{\tilde{d}} \, e^{-i\xi} & m_{\tilde{d}}^{2} - \frac{1}{2} \, \Delta_{\tilde{d}} \end{pmatrix}$$

The CP phase ξ affects $B_s - \overline{B}_s$ mixing!

Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \to s_R$ into $b_R \to d_R$ transitions. A strong constraint on this extra mixing angle is implied by ϵ_K .

Trine, Wiesenfeldt, Westhoff 2009

Phenomenology

We have considered $B_s - \overline{B}_s$ mixing, $b \to s\gamma$, $\tau \to \mu\gamma$, vacuum stability bounds, lower bounds on sparticle masses and the mass of the lightest Higgs boson.

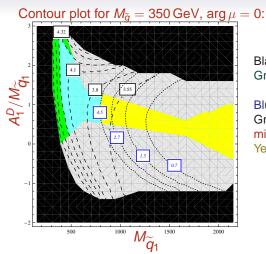
The analysis involves 7 parameters in addition to those of the Standard Model.

Generic results: Largest effect in $B_s - \overline{B}_s$ mixing

tension with $M_h \ge 114 \,\text{GeV}$

Collaborators:

Sebastian Jäger, Markus Knopf, Waldemar Martens, Christian Scherrer and Sören Wiesenfeldt



Black: negative soft masses² Green: excluded by $\tau \to \mu \gamma$ and $b \to s \gamma$

Blue: excluded by $\tau \to \mu \gamma$ Gray: excluded by $B_s - \overline{B}_s$

mixing Yellow: allowed

dashed lines: $10^4 \cdot Br(b \to s\gamma)$; dotted lines: $10^8 \cdot Br(\tau \to \mu\gamma)$.

Conclusions

• The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \to J/\psi \phi$ data. The central value is easier to accommodate if both a_{fs}^s and a_{fs}^d receive negative contributions from new physics.

Conclusions

- The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \to J/\psi \phi$ data. The central value is easier to accommodate if both a_{fs}^s and a_{fs}^d receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^{\Delta} < 0$, driven by $B(B^+ \to \tau^+ \nu_{\tau})$ (and possibly ϵ_K).

Conclusions

- The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \to J/\psi \phi$ data. The central value is easier to accomodate if both $a_{\rm fs}^s$ and $a_{\rm fs}^d$ receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^\Delta < 0$, driven by $B(B^+ \to \tau^+ \nu_\tau)$ (and possibly ϵ_K).
- Large CP-violating contributions to B_s B
 _s mixing are
 possible in supersymmetry without violating constraints
 from other FCNC processes.

Conclusions

- The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \to J/\psi \phi$ data. The central value is easier to accommodate if both a_{fs}^s and a_{fs}^d receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^\Delta < 0$, driven by ${\cal B}(B^+ \to \tau^+ \nu_\tau)$ (and possibly ϵ_K).
- Large CP-violating contributions to B_s B
 _s mixing are
 possible in supersymmetry without violating constraints
 from other FCNC processes.
- A study in the CMM model of GUT flavour physics has revealed a possible large impact of the atmospheric mixing angle on B_s−B̄_s mixing without conflicting with b → sγ and τ → μγ.